모델의 activation visualization 부분을 분석해보자. simple_grad_cam def simple_grad_cam(features, classifier, target_class): """ calculate gradient map. """ features = nn.Parameter(features) logits = torch.matmul(features, classifier) logits[0, :, :, target_class].sum().backward() features_grad = features.grad[0].sum(0).sum(0).unsqueeze(0).unsqueeze(0) gramcam = F.relu(features_grad * features[0]) gramcam =..